A Fast Method to Calculate the Spatial Impulse Response for 1-D Linear Ultrasonic Phased Array Transducers
نویسندگان
چکیده
A method is developed to accurately determine the spatial impulse response at the specifically discretized observation points in the radiated field of 1-D linear ultrasonic phased array transducers with great efficiency. In contrast, the previously adopted solutions only optimize the calculation procedure for a single rectangular transducer and required approximation considerations or nonlinear calculation. In this research, an algorithm that follows an alternative approach to expedite the calculation of the spatial impulse response of a rectangular linear array is presented. The key assumption for this algorithm is that the transducer apertures are identical and linearly distributed on an infinite rigid plane baffled with the same pitch. Two points in the observation field, which have the same position relative to two transducer apertures, share the same spatial impulse response that contributed from corresponding transducer, respectively. The observation field is discretized specifically to meet the relationship of equality. The analytical expressions of the proposed algorithm, based on the specific selection of the observation points, are derived to remove redundant calculations. In order to measure the proposed methodology, the simulation results obtained from the proposed method and the classical summation method are compared. The outcomes demonstrate that the proposed strategy can speed up the calculation procedure since it accelerates the speed-up ratio which relies upon the number of discrete points and the number of the array transducers. This development will be valuable in the development of advanced and faster linear ultrasonic phased array systems.
منابع مشابه
Phased array ultrasonic imaging using an improved beamforming based total focusing method for non destructive test
One of the novel ultrasonic phased array based scanning methods for ultrasonic imaging in non-destructive test is total focusing method (TFM). This method employs maximum available information of the phased array elements and leads to an improved defect detection accuracy compared to conventional scanning methods. Despite its high detection accuracy, TFM behaves weak in distinguishing the real ...
متن کاملPhased array ultrasonic imaging using an improved beamforming based total focusing method for non destructive test
One of the novel ultrasonic phased array based scanning methods for ultrasonic imaging in non-destructive test is total focusing method (TFM). This method employs maximum available information of the phased array elements and leads to an improved defect detection accuracy compared to conventional scanning methods. Despite its high detection accuracy, TFM behaves weak in distinguishing the real ...
متن کاملA new algorithm for spatial impulse response of rectangular planar transducers.
Previous solutions for spatial impulse responses of rectangular planar transducers require either approximations or complex geometrical considerations. This paper describes a new, simplified and exact solution using only trigonometric functions and simple set operations. This solution, which can be numerically implemented with a straightforward algorithm, is an exact implementation of the Rayle...
متن کاملSimulation Study on the Acoustic Field from Linear Phased Array Ultrasonic Transducer for Engine Cylinder Testing
Ultrasonic phased array inspection technology is widely used in nondestructive evaluation (NDE) applications and it has been proved to be an effective method for flaw detections in industry. In our study, this nondestructive evaluation method is proposed to detect the corrosion defects on engine cylinders. In order to demonstrate its feasibility, it is necessary to study the characteristics of ...
متن کاملMathematical modeling of the radiated acoustic field of ultrasonic transducers
Ultrasonic inspection techniques are widely used for nondestructive evaluation of materials. Mathematical modeling provides an efficient and reliable method to assist the design of the inspection application and the analysis of its results. In this work we use a method based on the Rayleigh-Sommerfeld integral to express the pressure in a fluid generated by different ultrasonic devices like mon...
متن کامل